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Abstract

" This paper deals with the problem of select-
ing the population associated with the larg-
est unknown mean from several normal popula-
tions having a common unknown coefficient of
variation. Both subset selection and
indifference zone approaches are studied.
Based on the observed sample means and
sample standard deviations, a subset selec-
tion rule is proposed. Some properties
related to this selection rule are discussed.
For the indifference zone approach, a two-
stage elimination type selection rule is
considered. If the experimenter has some
prior knowledge about an upper bound on the
unknown means, a modification is introduced
to reduce the size of the sclected subset at
the first stage and also to reduce the
sample size at the second stage. An

example is provided which indicates that the
saving of total sample size is quite signi-
ficant if this prior knowledge is taken into
consideration in designing the selection
rule. It is shown how to implement the
above selection rules by using several
existing tables.

*This rescarch was supported by the Office of Naval
Research Contract N00014-84-C-0167 at Purdue University.
Reproduction in whole or in part is permitted for any
purpos~ of the United Statecs Covernment.
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1. Introduction

The problem of selecting the population associated with
the largest unknown mean has been extensively studied
in the literature for normal populations. References
may be found in Gupta and Panchapakesan (1979). These
procedures are not applicable when the population
standard deviations are proportional to the population
means, a situation that is quite common in physical and
biological applications. In the literature, among

~. others, Gleser and Healy (1976) have discussed several
best asymptotically normal estimators of a normal mean
with a known coefficient of variation. 1In the area of
ranking and selection, Tamhane (1978) used estimators '
developed by Gleser and Healy (1976) and proposed selec- i
tion rules (through both subset selection and indiffer-
ence zone approach) for normal populations having a
common known coefficient of variation, and provided
tables for implementing the rules in the large sample
case. Gupta and Singh (1983) proposed a subset selec-
tion rule, based on sample variances, for selecting the
ropulation associated with the largest mean. Their
selection rule is independent of the value of the common
coefficient of variation, and therefore, can be applied
b to the situation when the value of common coefficient of
variation is unknown.
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In this paper, the problem of selecting the population

with the largest mean from several normal populations

: having a common unknown coefficient of variation is

& studied. The statistical formulation of the problem is

s given in Section 2. In Section 3, a subset selection
rule, based on the observed values of the sample mecans
and sample standard deviations, is proposed., Some
properties related to this selection rule are also

L discussed. 1In Section 4, a two-stage elimination type

. rule is given based on the indifference zone
approach. If the experimenter has some prior knowledge
about an upper bound on the unknown means, a modifica- '

" tion is introducecd which reduces the sample size at the B
second stage. To implement the above selection rules,

the related tables are available from Gupta (1963), and

Gupta, Panchapakcsan and Sohn (1985). ‘
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2. Formulation of the Sclection Problems

Let MyeeeesTy be k (> 2) normal populations with .
positive means el,....ek and a common unknown coeffi-
cient of variationb. Let 81 See-2 8y be the

ordered values of the means. We shall assume that the s
experimenter has no prior knowledge concerning the
correct pairing between L and e[j] (L<41i, j < k).

The population corresponding to o will be referred )y

[k]) -
as the best population. 1In the following, we will let .
9 = (01""'0k) be the parameter vector and 9 be the

parameter space. -

Subset Selection Approach

According to this approach, the goal of the experi-
menter is to select a (small) subset of populations
which contains the best population. The selection of
any subset containing the best population is called a
correct selection (CS). The decision-maker restricts
attention only to those rules which guarantee the
probability requirement (the so-called P*-condition)
that

. e e e, -
R ]

At

. .

PO{CS} > p* for all 3 € a, {(2.1)

L

g

-1

where P*, k < P* < 1, is a preassigned constant.

EWNINEE

Indifference Zone Approach H

According to this approach, the goal of the experiment-
er is to select the best population. The selection of
the best population is called the correct selection X
(CS). For this approach, in order to specify the N
probability requirement, it is first necessary to

define a measurc of distance between two populations. =
we consider the following measure of distance:

a(ni,nj) = Ci-oj, the difference between the two popu-

lation meoans of T and “j‘ Note that this measure of
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distance is different from that considered by Tamhane
(1978) . For a preassigned value §* > 0, let
Q(s%) = (g € afo,,, > Og-1] * $*}. 2(8%) is known as

the preference zone and its complement as indifference
zone. The assignment of &§* value will be based on the
experimenter's prior knowledge. The experimenter
restricts consideration only to those rules which
guarantee the probability requirement that

PQ{CS} > P* for all § € (&%), (2.2)
where P*, k'l < P* <1, is a preassigned constant.

3. Subset Selection Approach
The goal here is to select, on the basis of an indepen-
cdent random sample xij, j=1,...,n, from each L

(1 < i < k), a subset containing the best population
with the minimum probability P* of a correct
selection.

Subset Selection Rule R1

For each i, let X, = L 1§ X.. ana §2 = —L_ T (x,.-%)2
’ . nj=1 iJ i ~—y | i . .

i 521 j “i

Based on (ii,si), 1l < i < k, we propose a subset selec-
tion rule R, as follows:
e T by 2 s g
R,: Select =, if X, > Xj ‘/g cs; for j#i. (3.1)
The constant ¢ > 0 is determined by

p{zj <cW for 1l < j < k-1} = p* (3.2)
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(2, ~ N(0O,1), 123 < kel

cov(zi.zj) = 1/2, for i # j;

(3.3)
(n-1)w? ~ y2(n-1); and

L(Zl""'zk-l) and W are independent.

The value of c satisfying (3.2) is available from Gupta
and Sobel (1957), and Gupta, Panchapakesan and Sohn
(1985).

Probability of a Correct Selection Associated with Rl

Let P,{CS|R} be the probability of correct selection
N

when 9 is the true parameter vector and the selection
rule is applied. Then, we have

Theorem 3.1. P, {CS|R,} > P* for all § € Q.
"

Proof: Without loss of generality, we can assume that

Ok = G[k]‘ Following a straightforward computation,
PO{CSIRl)
\
= PQ{Xk 2 Xy - v2/n cs,  for j # k) (3.4)
- -1 S
= pg{y < /nb ay(g) + /Ecsj(g)w for 1 < j < k-1},
where
(

- T % _ -1,,2, .2, -3 S
Y. = /E(xj X =0 40, )b7 " (8, +63) % ~ N(0,1), 1<j<k-1

20,2, 020,02, 20 =0 _ : :
cov(Yi.Yj) = Ok[(ek+oi)(ek+6j)l = oij(g). ié#3

W=s./(bo),(n-1)¥* » x?(n-1) and (3.5)

L(Yl""’Yk-l) and W are independent;

and
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=31
uj(g) = (ok-ej)(ei+0§ <, 1< 3j < k-1;
2 N (3.6)
8,(8) = o, (o +03)7 . 1§ < k-l

1 _.
Note that aj(8) > 0, B4(g) 2 1//2 and p;5(8) 2 3 since
0 2 ej for j # k. Then by Slepian's inequality, we
conclude that the smallest value of the constant c is
given by
Pg{cslal} 2 P{Zy < cW for 1 < j < k-1} = P* for
8 € q,

N

where zj (1 < j < k-1) are defined in (3.3).

Least Favorable Configuration

Let o, = {Qlel =...= 8, > 0}. For each § € 2,

?k =.e[k] being fixed, both aj(g) and sj(g) are decreas-
ing in o, and uj(Q) =0, sj(g) = 1//2 when 0y = 8.
Then by Slepian's inequality, we can see that

inf P {CS|R,} = inf pe{cisl} = pgo{cslnl}

QGQ i QEQO X

for any 8, € 2 Note that P, {CSIRl} does not depend
N

0 0 0
on 20.

Some Properties of R1

Property 1. For fixed 9 € @, Pe{cslkl} is decreasing
in b for b > 0. v

This is obvious from (3.4) since uj(Q) > 0 and the
distributions of (Yl,...,Yk_l) and W are independent
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; of the parameter b.

’

For fixed b, suppose that (el,...,ek) = .
(ac1 + dl,...,ack + dk)' where c¢; > 0, a, di > 0 and
ac, + di > 0 for each i = 1,...,k. Also, we assume
that Cx 2 cj, dk > dj for j # k. Thus, ek > ej for
j # k. Then,

G et s ¥

pg{cslnl} f
) (3.7) -
2 =P ¥y < /A gj(a)b'l + YZchg(a)W  for 3 # k), {
. 9 R
. - - - 2 2.3 :
3 where gj(a) = [a(ck cj)+(dk dj)][(ack+dk) +(acj+dj) 15 \
- 2 2,-3 .
hj(a) = (ack+dk)[(ack+dk) +(acj+dj) 1 2. .
Lemma 3.1. The following three statements are
) equivalent.

: d d. o
: 1y =Ko i

3 Cx T Cy |

|
ii) gj(a) is increasing in a for a > 0. .

iii) hj(a) is increasing in a for a > 0.

* -
! From (3.7) and Lemma 3.1, we have the following results.

Property 2. Let b be a fixed constant, then
X dk 4.

a) if — > —1 for all j # k, then P {CS[R,} is

decreasing in a; and




4.
b) if —X < 1 for all j # k, then P
ck-c' 2
J
increasing in a.

(cslnl} is

The following two situations are special cases of
Property 2.

c) When C) = Cy =...= Sy and dl”"'dk are fixed

constants, then PB{CSlRl} is decreasing in a.
N~

d) Wwhen d1 =,,.= d = 0 and Cyre-.,Cy are fixed
'& constants, then {CSIR } is a constant, which is
h' independent of the parameter a.

1
Let Pe(nilRl} be the probability of including L in the
v

ﬁ Property 3. Monotonicity of R

selected subset when rule Ry is applied and § is the
true parameter vector. Then,

Theorem 3.2. If o0, > By then Pg{“ilkl} > PQ{"jIR1}°

Proof: Without loss of generality, let 8, 2 87, and
we will prove that P (= lR } 2 Po{m IR }. Straight-
forward computatlons show that 2

P (=, lRl}
_ -1,.2,.2,~3 2,.2,-%
Y5 < /E(oi ej)b (ei+ej) +/5coi(ei+ej) W and
= Pe
" -z 2,02)"y ¢
Yim < /H(ei-om)b (e +e ) +/2co, (0540 ) or
3 <mc¢<k

..........
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PRI LLALLL-'. PR LA TR I S .




for i,j = 1,2, i # j, where COV(Yim'Yiz) -

1
o2tted+e2) (e24ed)17E, 1 cu, mck, L #m, i, mA

We then conclude the proof of this theorem by an
application of Slepian's inequality and by noting the
following facts:

i) (O—Gm)(92+6:)-% is increasing in o for 6 > 0 for

each m;
. 2. 2.-%2 . . . .
ii) (o +em) is increasing in o for 8 > 0 for each

m; and

iii) cov(Y2m, YZE) > cov(Ylm'le) for 3 <m, ¢ < Kk,
m # £ and cov(Y21, Y2m) > cov(le, Ylm) for
3 <mc< k.

Expected Size of Selected Subset

Note the selection rule R1 selects a non-empty subset,

the size of which is not fixed in advance but depends
on the outcome of the experiment. Hence, as a measure
of performance of the selection rule Rl' we can con-

sider the expected size of the selected subset, say
Bn(SiRl). We have the following expression:

k
EQ(S[RI) glpg{«iinl}

(3.8)

=

= izlpg{vi 2 V40405 +/nb (ejei 1)-/2cW for
j#id,

where V., 1 < i < k, are iid having standard normal

distribution and W is as defined in (3.3). It is often
cf intercst to identify the parameter configuration

..............
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where the supremum of (3.8) occurs. For k = 2, let

6, =0 and 6, = 40, 0 <4 < 1. Then,

3

©, - 2 -2
E (S|Ry) = [o(/Ab™t(a-1) (1+8%) T24/Z0c (148%) TEu) AR, (W)
~v 0

UM, | DX ANt § RN e T

[ - - -;
+ Jot/mb L (1-n) (1+a2) "ErvZe (1402 Ruar, (W),
0

«wERY .

'.

where'®(-) is the standard normal distribution and
Fw(~) is the distribution of random variable W.

-

. .
P Ty

We see that sup E (SIRl) = 2P* and the supremum occurs g
e R i
when A = 1. 'For k > 2, it appears difficult to obtain -

such a result. We can only state that
sup E,(S|Ry) > sup E (S|R,) = kP*.
QEQ e '?,GQO A

T

OB
A A DN

i WO

Remark

o

For the case when b is known, Tamhane (1978), proposed
a subset selection rule for the best population using
estimators of Gleser and Healy (1976). He also
provided tables for implementing the rule in the large
sample case. However, for small sample sizes, tables
for implementing Tamhane's rule are not available. It
has been pointed out by Tamhane (1978) that for certain
values of b, k, n and P*, Tamhane's rule does not exist.
Based on sample variances, Gupta and Singh (1983) also
proposed a subset selection rule for the problem of
selecting the best population. Their selection rule
and the associated probability of correct selection are
independent cf the value of the common coefficient of
variation b, and hence, can be applied to the situation
when this value is unknown. They made some comparison
Letween Tamhane's and their rules. It is found that 1in
tcrms of expected size of selected subset, the perform-
ance of Gupta and Singh's rule is a little inferior to
that of Tamhane's rule. For k = 2 and large sample
size, there is not much differcnce betwecen thesec two
rules. o
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'l
P,
A Note that the proposed rule Rl is independent of the E

! value of the common coefficient of variation b. How-
ever, from (3.4), we can see that the associated "
X probability of a correct selection depends on b for K
. each fixed 9 € 9. Therefore, it is interesting to ¢
) compare the performance of rule Rl with Gupta and L4
k. Singh's rule. Further study of this comparison is to %
k. be carried out. .
& .
b 4. Indifference Zone Approach "2
3 The goal here is to derive selection rules which will ;

select the best population with a guaranteed probabil
ity P*. On Q(6*), the associated measure of distance
between populations L and 7. is G(Gi,ej) = ei-ej, ;
which is different from the one considered by Tamhane .
(1978) . Since both § and the common coefficient of

variation b are unknown, on Q(5*), it is impossible to e
construct a single-stage selection rule which guaran- ]
tees the probability requirement of (2.2). 1In the

following, a two-stage elimination type selection rule N
= is proposed.

R

Two-Stage Elimination Type Selection Rule R, '

Stage 1l: Take no(l 2) independent observations
xij(j = l,...,no) from each L (i=1,...,k), and

n

0
compute the sample mean i;l) =-L ] X,. and sample

-- no j=l lj -

n N
0 X

. 2 1 _2(1),2 . h
variance S = =43 jzl (X;5=X;7")%. Then determine the

- o
set

A= (1D > igl’-(/idsi/ﬁrg -sm)* for j#i), (4.1)

e g B )

YR R N

wherc y+ = max(y,0) and d is a positive constant chosen
to satisfy (2.2).
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If A contains only one element, then stop sampling and

assert that the population associated with max i;l) is
1<j<k
the best.

If A has more than one element, then proceed to the
second stage.

Stage 2: Let SA = max Si. Determine
iea
N = max{no,[2(dSA/6*)2]*}, where ([y]* denotes the

smallest integer > y. Take N-n, additional observations

xij from each LA (i € A) if necessary. Then compute

N
the overall sample means X, =+ ) X.. (i € A) and
i N j=1 ij
assert that the population associated with max ii is
i€a

the best.

Note: This selection rule is essentially of the same
type as that of Gupta and Kim (1984), even though we
have a different type of screening procedure and
different way to determine the value N. The difference
is due to the fact that in this paper, the concerned
population standard deviations are proportional to
respective population means while Gupta and Kim (1984)
considered a common unknown standard deviation.

Probability of Correct Selection

Without loss of generality, we still assume that e is
the best population. Therefore, Oy 2 ej + &* for j # k.
Let B be any subset of {1,2,...,k} containing the
element k; and let E(B) be the event that subset B is
selected at the first stage. Also, let

¢ ={(Bc (1,...,k}|k € B}. Then,

$~ . \" ‘_' ."
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; 13 ;
b, | W
[ ¢
" &
A g
_ /2ds y
u E(B) = (X} > ®{V-( -s*)* for j # k}.(4.2) ~

BEC ] N
y Also,
P_{CS|R,} = P_{Cs N E(B)} {
9 2 Béc 2
(4.3) M
= ) P,{CS|E(B)}P {E(B)}.
» BéC % 2 f
N Here PQ{CSIE(B)} denotes the conditional probability of -
3 CS given E(B). -
N ¢
Since o, > oj + &* for ) # k, for each B € C, ?
. P,{CS|E(B)) . X
X N - . N
= pQ{xk 2 X5 for j € B-{k}|E(B)} (4.4)

-1,.2, .2 -1 ; .
< > pe{Yj < /Ns*b (05+04) = for J € B-{k}|E(B)}, -
. e :
X where :
- \
' v, = /R{(R;-%,)-(6.~0. )11 (ble2+62)%)"L o n(0,1) .

p| j 7k J 'k ik rene

\ l <3 < k=1; .
\ .-
E cov(Y;,¥y) = p;418) which is defined in (3.5) for y
- i # j- i

) Conditional on E(B), /Ns&* > /idSB > /Eask. Then, it
. follows that z
P, {CS|E(B) ) %

2 Pylyy < /fej(g)dw for j € B-{k}|E(B)} (4.5)

) .
. . R
3 > pj(yj < /iaj(g)dw for 1 < j < k=-1|E(B)} X
Y . 2 ‘ { -
where W = S,/(bo,) and 8(g) is defined in (3.6). 2
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Let Y:;1) - /;;[(ggl)-iél))-(ej-ek)](b(e§+ei)§)-lp

l <3j<k-l.

1)

Then, Y; A“N(0,1), cov(Y{l),Ygl’) = pij(g), i#¥ 3.

Also, cov(Yi,Ygl)) 20, 1<i, j <k-1. It should be
. (1) (1)
pointed out that (Yl,...,Yk_l) and (Y1 ""'Yk-l) are

identically distributed, and (Yl,...,Yk_l) and

(Y{l),...,Yéii) are independent of W.

. k k k
For fJ.x_ed ek(- 6“‘]), let 9" = (el""'ek)' where

k k .
by = ek and ej = ek-st for j # k. Then,

x (4.6)

B58) 2 8408

\4
w
o~
D

Note that both pij(gk) and Bj(gk) are decreasing in ek:

k 1 k 1
pij('?' ) "'2-1 Bj('e ) "",—Eas ek"“-

From (4.2) to (4.6) together with the facts that
ek > °j + &* for j ¥ k, cov(Yi,Ygl)) >0,

/3; §* 4 (v"idsk - /566*)+ > lidsk and repeated applica-

tions of Slepian's inequality, straightforward
computations lead to the following result:
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pg{cslnz}

v

(1) .
pg{yj < /Eej(g)dw. Yo o< /Eej(g)dw for 1 < j < k-1

1)

)

T (
éPQ{Yj < /faj(g)dw, Yj < /fej(g)dw for

1 < 3 2 k=1}dF,(w)

| v

[ . 2
élPQ{Yj < /285(g)dw for 1 < k=1}] “aF (W)

)
|a

183 k{Yj < /isj(gk)dw for 1 <

2
k-1}]%ar,. (w)
0o 8 - w

v
A
.
A

F; k .
[[p 1Yy < /Esjtg )aw for 1 < j

2
k-11}dF,, (w)]
00 W

Iv
Ia

{v

[[P{Z. < dw for 1 < 3 < k-1}dF,(w)]1%'

il

[P(z, < W for 1 < § < k-117

where (Zl,...,zk_l) are defined in (3.3), and distribu-
ted independently of W.

For given P*, we can choose the value 4 so that

P(z; < dW for 1 < j < k-1} = /P¥. (4.8)

Therefore, the probability requirement of (2.2) will be
satisfied, For some specified values of P*, k and Y

the corresponding d value can be found in Gupta and
Sobel (1957) and Gupta, Panchapakesan and Sohn (1985).
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E A Modified Two-Stage Selection Rule R, (6%) !
. In practical situations, the experimenter sometimes may k
: have some prior knowledge about an upper bound on °[k]' -
’ say 6*. This knowledge can be used to reduce the
v sample size taken at the second stage.
4
Let e*(a*) = (e*,...,e*) where e[k] = g% and ~
N OTJ] a gh=g* for j # k. Let p% = o* (e*2 + (e*-a*)z)-l f
S _ e
2 and g* = e*(e*z + (e*-c*)z) %. Let Yz(l < i < k-1) be -
5 standard normal random variables having cov(YI,Y;) = p* g
for i # j, and W be a random variable distributed
] independently of (Y{,...,Y#_;) with (n -1)W’ having a ;
)] .
: x? aistribution with (n,~1) degrees of freedom. -
i Let d(8*) be chosen to satisfy ‘
3 P{Y? < d(6*%)/28*W for 1 < j < k-1} = /F¥. (4.9) 3
\ Then a modified two-stage elimination type selection ?
N rule, say Rz(e*). can be defined. This selection rule -
Rz(e*) is similar to rule R,. The only difference is -
. that now the value d(6*) is used instead of the value .
. d. We denote the corresponding N by N(e*). :
Cd
&

Following (4.7), one can see that for each ] € Q(s*,0%)
where a(s*,e*) = {9 € n(c*)le[k] < 6%},

Pe{cslaz(o*)} :
4"
> [P(YY < d(6%)/Z6*W for 1 < § < k=117 = pe.

1, B

2 Since p* > % and g* > 7:, it follows from Slepian's 3
2 2 :
inequality, (4.8) and (4.9) that d(e*) < 4, and .
hence N(o*) < N. Also, if we let A(o*) denote the Y

SR AP,

‘.
.\

¢
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subsct selected at the first stage by applying rule 2
Rz(o*), that is, -
L -
VZa(0%) S, =
atoh) = (1|x{Y 5 BV (—E -s0)* for %
"o (4.10) -]
j# i}, -
then, since d(e*) < d, from (4.1l) and (4.10), we can ‘;
see that A(o*) < A ; hence, |A(e*)| < |A| where |B] ~
denote the size of set B. o
| o
Generally speaking, the modified selection rule Rz(e*)
; reduces the size of the subset selected at the first -
I stage and reduce the sample size needed at the second
stage. -
An Example to Illustrate the Use of R2 and Rz(e*) -
-
Suppose that a consumer has to decide on buying one lot :
; of bolts from among five lots that are available. The -
' tensile strength (in pound per square inch; psi) of the 2
ith (1 < i < 5) lot is normally distributed with mean
Oi and standard deviation be, i where both b and e are
positive and unknown. Suppose that &* = 200 psi and 7
P* = 0.90 have been specified by the consumer. Further, -

supposc that n, = 16 bolts are randomly sampled from

each of the five lots and that the sample means and the
sample standard deviations are:

- SARLIILLN §§1’,§§1’,§§1’)=(3so,3ao,47o,6oo,650),

R R A
sy -

(sl,sz,s3,s4,ss)=(360,420,500,580,600).

Now /P* = 0.9486833 =~ 0.95, so from Table IV (p = 0.5)
in Gupta, Panchapakesan and Sohn (1985}, using interpo-
lation, it is found that 4 ~ 2.34582. Then,

A= {3, 4, 5}). Therefore, we proceed to the second
stage and find that N = 100. Further additional 84 ¥
obscrvations are taken from cach of the selected lot

.. [
iy

e
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and the sample mean ;i is computed. Finally, the

consumer selects the lot of bolts associated with the
largest sample mean among X;, 3 < i < 5, as the best.

o

Suppose now that the consumer, from past experience,
has some knowledge that 0[5] < 1000 = e*. Therefore,

he prefers to apply the modified selection rule Rz(e*)
for his selection problem. Now,

PRl S

rE PSS,

.M

o = o2 (o%24 (p2-5#)2)"L _ 0_609756;

-1 :
8% = o*(o%2+(o%=5%)2)"% = 0.7808688. >

9 Let 4, = d(e*)/28*. From (4.9) and Table IV (p = 0.6) 5

in Gupta, Panchapakesan and Sohn (1985), using interpo- N
lation, it is found that d1 = 2,30289. Therefore .

1 d(o*) =~ 2.0853556. Note that p* =~ 0.609756 > 0.6. So
i the value d(e*) obtained in this way will be a little
. conservative since the exact value of d(e*) will be a
- little less than that used here. We then find that
- A(e*) = {4,5} and N(e*) = 79. Therefore the consumer
) needs to take additional 63 observations from each of
- 4th and 5th lots to accomplish the selection process. :
Note that the total sample size by applying rule i
Rz(e*) is 206 while the total sample size by applying y
rule R2 is 332. The saving of the total sample size is x
quite significant. .
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